Implementing Student-Centered Activities in Content-Intensive Courses

If you’ve ever taught a content-intensive course, you’ll know it’s like trying to finish a marathon in a sprint. In my experience, you get to the finish line, but you hardly remember the journey there. The content-intensive courses I teach are the foundational nutrition classes. Each contain at least six major learning objectives with about two sub-objectives and are designed to cover upwards of fifteen chapters of material in a ten-week quarter system. The predominant approach to these types of classes by faculty is to go broad, not deep, in learning and understanding.  I must admit this has been my approach as well, in fear that I will miss out on covering one of the learning objectives or sub-objectives. While my students tell me that the courses are interesting and engaging, I can’t help wonder if they will actually remember any content from the course or if they feel as if their brain has been put through a blender by spring break. Is the learning authentic or are they just learning for the sake of memorization to pass the final exam?

The ISTE Standards for Educators charge instructors with, “design[ing] authentic, learner-driven activities and environments that recognize and accommodate learner variability,” (ISTE, 2017).  If instructors truly wish to design their course using evidence-based practices, the focus needs to shift from covering material to student learning without compromising the learning objectives. ISTE educator standard 5b implies that technology can help marry the two concerns, “design authentic learning activities that align with content area standards and use digital tools and resources to maximize active, deep learning,” (ISTE, 2017). This ISTE 5b standard can best be illustrated by the “genius hour” concept developed by Nicohle Carter in pursuit of developing a personalized learning environment for her students. The idea is brilliant.  Allow students one opportunity a week (or as time allows) to dive deep into a topic they are interested in and demonstrate their learning through an artifact or digital presentation. The implementation of genius hour follows a six-component design model that highlights new roles and responsibilities for teachers and students alike, (Carter, 2014). See figure 1.1 for more information on the six-component personalized learning design.

Infographic highlighting 6 essentials for personalized learning.
Figure 1.1 Nicohle Carter’s Personalized Learning Essentials.

When implemented well, intrinsic motivation for learning soars, students are engaged in the material, and teachers can meet those ever-important learning objectives without feeling like they are just shoveling materials into students’ brains, (Carter, 2014). It seems like a win-win.  However, I started thinking back on my content-intensive courses and wondered how can student-centered activities (like genius hour) be implemented in these types of courses?

As a starting place for answering my question, I revisited Kathleen McClaskey’s continuum of choice.  I find the concept interesting that developing student-centered learning/activities, it ultimately comes down to how much control the teacher wants to let go of and how much “choice” is open for the students. In traditional content-intensive courses, the teacher has all of the control, or what McClaskey would classify as teacher-centered, (McClaskey, 2005).  She/he creates the lectures that revolve around a specific chapter in a textbook, then lectures to ensure the material in covered. Students, in this model, sit and observe the lecturer in hopes of absorbing some of the materials (or in most cases, cramming the information into their brain the night before the exam) while never actually deeply engaging with the information.  Using McClaskey’s continuum of choice suggests that some activities can still be controlled while giving the students some freedom to explore topics in their own choosing, i.e. consider the participant and co-designer models, (McClaskey, 2005).

Diagram of the Continuum of Choice.
Figure 1.2 McClaskey’s Continuum of Choice. (Continuum of Choice TM by Barbara Bray and Kathleen McClaskey is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.)

The challenging thing about the more student-centered models such as the designer or advocate from McClaskey’s continuum requires time, a luxury oftentimes not afforded in content-intensive courses, nor do they address how to implement each model topic.  However, despite these concerns, I am beginning to realize that in order to allow for more intrinsic and authentic learning, I need to let go of the desire to control all aspects of the content-intensive courses and shift my focus to what is really important, student learning.

Many of the resources similar to McClaskey, mention explicit instruction as part of a student-centered classroom. Explicit instruction provides “effective, meaningful, direct teaching…where students are active participants in the learning process,” (Shasta County, 2009). Creating an explicit learning lesson involves six guiding principles. 1) The instructor begins the class by setting the stage for learning, the learning objectives are clear and students understand their responsibility for their learning. 2) This is followed by clear, simple, and direct explanation of what the daily task is, why it is important, and how to best complete the task.  Students appreciate when tasks are broken down into smaller, logical steps. 3)The instructor models the process, including their thought process using visuals. This is important because simply explaining a concept doesn’t mean that the students will understand it or know what to do. 4) Before diving into the assignment on their own, students are given a guided activity where the instructor assesses readiness of the class. 5) Once the concept has been mastered, the students take to the task independently. 6) After the task(s) has been completed, the students are given an option for informal or formal reflection, the artifact is collected and compared to the learning objectives, (Shasta County, 2009).  Figure 1.3 provides a reference guide for these steps.

Infographic on explicit learning
Figure 1.3 Explicit Learning Reference Guide

According to the Shasta County Curriculum Lead, explicit learning is best used when there is a “well-defined body of information or skills students must master,” especially when other models such inquiry-based or project-based cannot be successfully implemented, (Shasta County, 2009).  The role of the teacher is more directed, specific, and allows students more insight and practice into the skills that they are learning. What I like about explicit learning is that the classroom activities do not have to be modified completely but the modification occurs is how the material is presented and practiced.  Students can appreciate this model because they engage in active learning but still have guidance and support from the teacher via modelling.

Through explicit learning even the content-intensive courses can have a deeper and more meaningful impact on learning. I had one class in particular in mind when considering the explicit learning/personalized learning approach. I teach a not-so-introductory nutrition class designed to meet the needs of allied health students.  All allied health students are required to take at least one nutrition class as part of their career training, and for many, this class will be the only nutrition class they will ever take. The pressure is high in terms of delivering content as it is very likely that they will not revisit this material anywhere else. While I can’t change the fact that they need to explore the chemical compositions and the processing of the nutrients in the body, I can influence how they engage with the health effects and recommendations of these nutrients, which are ever-changing anyway.  Using personalized learning and the explicit learning models, I could allot for one class time a week for the exploration of the health effects/recommendations on whatever condition, trend, or issue they wished to explore. Like the genius hour, the students could work together to investigate and create a digital artifact of their choosing that would best present their topic, and lastly to further promote collaboration, they could work together to provide feedback to one another on their topics. The students would be learning through co-learning, gaining a stronger and deeper interest into the subject matter, proving that content-intensive courses can also be student-centered.

Resources

Carter, N. (2014, August 4).Genius Hour and the 6 Essentials of Personalized Education. Retrieved from http://www.edutopia.org/blog/genius-hour-essentials-personalized-education-nichole-carter

International Society for Technology in Education, (2017).  The ISTE standards for educators. Retrieved from: https://www.iste.org/standards/for-educators.

McClaskey, K. (2005, November 5). Continuum of choice- More than a menu of options. Retrieved from http://kathleenmcclaskey.com/choice/

Shasta County Curriculum Lead, (2009).  What is direct/explicit learning [Word doc]. Retrieved from http://www.shastacoe.org/uploaded/dept/is/district_support/explicit_instruction_may_2009.doc

Digital Storytelling and Creative Communication: Does One Help Develop the Other?

Alan Alda, from M*A*S*H*, knows how to tell a story.  In one of his presentations, he asks a young woman to the stage.  Alda then asks the young woman to carry an empty glass across the stage.  She stares at the him awkwardly and does it without much fanfare. Alda then walks to her with a pitcher of water.  He pours water into the empty glass and fills to the brim. He asks her to carry the glass to the other side of the stage. “Don’t spill a drop of water or your entire village will die.”- he says.  The young woman, slowly, deliberately walks across the stage. She carefully gauges the level of water in the glass as she takes each step. The audience is silent, enraptured in the backstory of the overfilled glass.  They are interested and invested in the story. (Watch Alan Alda explain the importance of storytelling in his video: “Knowing How to Tell a Good Story is Like Having Mind Control.”)

Stories are powerful. Storytelling is one of the oldest forms of communication that we have.  We are attracted to stories because they are human, (Alda, 2017). Stories relay information about human nature, accomplishments, challenges, and discoveries. They make us feel part of a community and help evoke empathy, (Dillion, 2014).  According to Alan Alda, we like stories because we think in stories, particularly if the story has an obstacle. Like in the example above, we are interested in listening to the attempts overcoming the obstacle, (Alda, 2017).

Stories can also be powerful in the classroom.  A good story helps shape mental models, motivates and persuades others, and teaches lessons, (Dillion, 2014).  There are many ways to deliver a story but I have been gaining significant interest in digital storytelling. Technology is not stoic but rather highly personalizable as people are discovering unique ways to learn, entertain, network, and build relationships using technology, (Robin, 2008).  It is not surprising then that people are using technology to also share their story. Digital storytelling is technique that I discovered as I was exploring problem based learning (PBL) to develop innovation skills.  In that blog post, I explained that digital storytelling was one mode students could employ to “solve” a problem in PBL by creating an artifact. I realize that this wasn’t directly related to my inquiry at the time, because problem-based learning is more focused on the process of problem-solving rather than the artifact itself.  Despite this, I found the idea of digital storytelling interesting and wanted to revisit it. “Storytelling” in particular, is a buzzword that circles back in unexpected mediums. For example, my husband attended a conference that explored storytelling through data, in other words, how to design graphs, charts, and other visual representations of data that share a story without any significant description or explanation. Yet these graphs communicate important information. That then got me pondering about how digital storytelling can be used to teach students to creativity communicate information either about themselves or about a topic using technology.

So then how can students use digital storytelling for the purposes of creative communication? This question relates to ISTE Student Standard 6: Creative Communicator in which, “students communicate clearly and express themselves creatively for a variety of purposes using the platforms, tools, styles, formats and digital media appropriate to their goals.”  Digital storytelling is one vehicle in which students can use to express and communicate clearly.  Interestingly, the idea of digital storytelling isn’t new, it was originally developed in the 1980’s but is experiencing a renaissance in the 2000’s, (Robin, 2008). Not only can digital storytelling be a medium for learning, but also different types of information can be relayed using this technique including personal narrative (what most non-ed professionals use), stories on informing/instructing, and lastly, stories that examine historical events, (Robin, 2008).

Stories must be well-crafted in order for them to be effective and memorable. Students can deliver a story by investigating a topic, write a script, develop their story, and tie it all together using multimedia, (Robin, 2008).  Blogs, podcasts, wikis, and other mediums like pinterest can be used to convey a story simply,(University of Houston, 2018). To help students get started, the University of Houston’s Educational Uses of Digital Storytelling webpage offers great information such as timing, platforms, and examples of artifacts.

Figure depicting the digital storytelling process.
Figure 1.1 The Digital Storytelling Process

Before diving into a story, the most important elements are explored in its theoretical framework.  This framework includes the seven-elements needed in order for each story to be impactful. Figure 1.2 below summarizes the seven key elements.  

Infographic describing the 7 elements of digital storytelling
Figure 1.2 The 7 Elements of Digital Storytelling

Just as Alan Alda explores in his video, the seven-elements emphasize that good stories must capture the audience’s attention, explore obstacles or serious issues that the audience can connect with, and must be personal in order to enhance and accelerate comprehension, (Robin, 2008). By allowing students to engage in digital storytelling, they are also developing crucial 21st century skills: digital, global, technology, visual, and information literacy.

Tying it all together: How does digital storytelling fulfill the requirements for the ISTE student standard on creative communicator?

As Robin alludes to, it can be challenging to distinguish the various types of stories because oftentime they overlap, particularly considering the personal narrative, (Robin, 2008). A good story is relatable, we can put ourselves into the shoes of the protagonist.  The use of technology is just another medium we can use to communicate our stories. By implementing digital storytelling in the classroom, it would allow for transformation (SAMR) of existing assignments and lectures.  Here are some additional thoughts on how this technique can help students become creative communicators:

  • ISTE 6A: “Students choose the appropriate platforms and tools for meeting the desired objectives of their creation or communication”.  Platforms such as blogs, podcasts, in addition to tools such as cameras, and editing software are all components of digital storytelling. Allowing students to evaluate the various platforms and tools in relation to their desired outcome, they would be developing digital, technology, and visual literacy.
  • ISTE 6B: “Students create original works or responsibly repurpose or remix digital resources into new creations”. Though the most common application of digital storytelling would be to create an original artifact, Robin provides an example of remixing in recreating historical events by using photos, or old headlines to provide depth and meaning to the facts students are learning in class, (Robin, 2008). By curating and remixing existing artifacts, students would develop global, digital, visual, and information literacy.
  • ISTE 6C: “Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations”. This idea goes back to the example I shared of storytelling using data (graphs/charts/figures) but it can also include infographics. Depicting complex data through an interesting visual medium engages digital, global, technology, visual, and information literacy.
  • ISTE 6D: “Students publish or present content that customizes the message and medium for their intended audiences”. The basis of storytelling is that it is meant to be shared with others.  If the story doesn’t match the audience, it will not be impactful or important. This is a point the 7-elements of digital storytelling stresses. Understanding and crafting stories for a specific audience demonstrates digital and global literacy.

Good digital storytelling can allow students become creative communicators.  Using technology can reach audiences in many ways never thought of before while still sharing the human experience.  As Robin puts it, in a world where we are receiving thousands of messages a day across many different platforms, stories become engaging, driving, and a powerful way to share a message in a short period of time, (Robin, 2008).

Resources

[big think channel]. (2017, July 18). Knowing how to tell a good story is like having mind control: Alan Alda. [Video File]. Retrieved from https://www.youtube.com/watch?v=r4k6Gm4tlXw

Dillon, B. (2014). The power of digital story. Edutopia. Retrieved from http://www.edutopia.org/blog/the-power-of-digital-story-bob-dillon

International Society for Technology in Education, (2017).  The ISTE standards for students. Retrieved from: https://www.iste.org/standards/for-students.

Robin, BR., (2008). Digital storytelling: A powerful technology tool for the 21st century classroom. Theory into Practice, 47: 220-228. DOI:1080/00405840802153916

University of Houston, (2018). Educational use of digital storytelling. Retrieved from: http://digitalstorytelling.coe.uh.edu/page.cfm?id=27&cid=27&sublinkid=75

Building Computational Thinking through a Gamified Classroom

Who says playing video games doesn’t teach you anything?  Playing and creating games could actually help students develop another 21st century skill, computational thinking (CT).  Computational thinking is  a form of problem solving that takes large, complex problems, breaks them down into smaller problems, and uses technology to help derive solution. In deriving solutions, students engage in a systematic form of problem solving that involves four steps: 1) “decomposition” where a complex problem is broken down into smaller, more manageable problems, 2) “pattern recognition” or making predictions by finding similarities and differences between the broken down components, 3) “abstraction” developing general principles for the patterns that emerge, and  4) “algorithm design”, creating step-by-step instructions to solve not only this problem but other similar problems in the future, (Google School, 2016). By engaging in computational thinking, “students develop and employ strategies for understanding and solving problems in ways that leverage the power of technological methods to develop and test solutions, (ISTE, 2017).  In other words, the key to successfully following this process is that students develop their own models rather than simply applied existing models, (Google School, 2016).

Figure 1.1 Components of Computational Thinking
Figure 1.1 Components of Computational Thinking

In researching ways to apply computational thinking in the classroom, I ran across scholarly articles discussing the gamified classroom. I have always been intrigued with this concept, from my own experience students are so much more engaged during class time when the required content is converted into a game.  During these game sessions, my role changes from the the person delivering the content, to the person delivering the game (i.e. asking the questions).  The students are responsible for providing the content by providing solutions to the posed questions, thereby evoking problem-solving skills and in some cases, critical thinking skills. This idea-thread then led me to think “what are some ways that a “gamified” classroom can help develop computational thinking?”

To help answer my question, I came across two articles that pinpointed models in game-design to build computational thinking:

Article 1: Yang & Chang, 2013. Empowering students through digital game authorship: Enhancing concentration, critical thinking, and academic achievement.

Yang and Chang explore how students can increase their motivation for learning when they are allowed to design their own game given a specific topic.  During the game design process there is significant problem-solving that occurs because of the interaction and the immediate feedback the process entails.  In addition, students gain high order thinking such as building creativity, and critical thinking. The authors mention three game building software that does not require extensive coding skills: RPG Maker, Game Maker, and Scratch. During their study, the researchers investigated the effects of game design process on seventh grade biology students that were using either Flash animation (digital flash cards)  or RPG Maker.  The investigated effects included concentration, critical thinking, and academic performance. Their result demonstrated that the group using the RPG maker had significant improvements on critical thinking and academic performance, while no significant difference was noted on concentration for both groups.

Article 2: Kazimoglu, et. al., 2012.  A serious game for developing computational thinking and learning introductory computer programming.

Kazimoglu et. al. begin their inquiry by providing a few definitions.  It is important to understand the terminology they use, mainly defining any game used for educational purposes as a “serious” game.  They acknowledge that several definitions of computational thinking exist so they create their own definition that require the following elements: 1) conditional logic (true vs. false conditions); 2) building algorithms (step-by-step instructions); 3) debugging (resolving issues with the instructions); 4) simulation (modeling); and 5) distributed computation (social sharing). The authors are challenged to create a non-threatening introduction to programming unit to combat common student perception that programming is “difficult.” Kazimoglu et. al. believe that when students are allowed to engage in game design, they are motivated to learn which provokes problem solving. They take this approach to their introduction programming class where they challenge students through a series of exercises using the Robocode platform. At the end of the study, all students successfully completed the exercise, engaging in problem-solving skills.

Conclusions. Interestingly, both of these articles struggle to exactly define “computational thinking” and both mention that specific research investigating the extent to which games can develop CT is lacking.  However, what both can agree on is that CT is best developed when students are the game designers.  In order to do this, both studies involved elements of programming instruction to help students successfully build their games.

While these articles offer models into successfully implementing computational thinking through game design and creation, it was a little disheartening to discover that programming instruction was a necessary component. My inclination was to think how can these processes be implemented and/or adapted in other classroom scenarios particularly when programming instruction may or may not be feasible.  Interestingly, not all researchers agree that programming need be involved in successful CT implementation. Voogt et. al. argue that although most research on CT involves programming, because CT is a thinking skill,  it does not require programming in order to be successfully implemented, (Voogt et. al., 2015). In fact, in a literature review conducted by Voogt demonstrated that students do not automatically transfer CT skills to a non-programming context when instruction focused on programming alone. The strongest indicator of CT mastery was actually heavily dependant on instructional practices that focuses on application, (Voogt et. al., 2015).

The lack of a standard definition of computational thinking also needs to be addressed. The two articles above and the Voogt researchers agree that discrepancies exist among current definitions of computational thinking.  To avoid confusion regarding the role of programming and other such technologies, computational thinking can be simply defined as a way of processing information and tasks to solve complex problems, (Voogt et. al., 2015).  It is a way to look at similarities and relationships between a problem and follow a systematic process to reaching a solution.  Figure 1.2 summarizes this simplified process.

Figure 1.2 Simplified Computational Thinking Components
Figure 1.2 Simplified Computational Thinking Components

According to this new context, it is not necessary to program games in order for students to build computational thinking.  Allowing students to participate in systematic artifact creation will do the trick.  Some examples of artifact creation without the use of programing include: remixing music, generating animations, developing websites, and writing programs.  The main idea of this artifact creation process is that students follow procedures that can be applied to similar problems. Figure 1.3 highlights this artifact creation process.

Figure 1.3 Artifact Creation Process for Computational Thinking
Figure 1.3 Artifact Creation Process for Computational Thinking

How can this artifact creation process be used in creating gamified classroom?  To help me explore this issue, one of my colleagues suggested allowing students to develop and design their own board game. While the solution seems low-tech, others agree with this strategy.  Michele Haiken, an educational leadership for ISTE, writes about adapting “old school” games for the classroom to help develop critical thinking and problem solving skills, (Haiken, 2017).  Students can even create an online “quest,” scavenger hunt, or create a “boss event” to problem-solve computationally, (Haiken, 2017).  For more tech-y solutions, existing platforms and/or games such as GradeCraft and 3DGameLab can be used to  apply computational thinking in a gamified classroom, (Kolb, 2015). Regardless of the method used, low-tech board games or high-tech game creation through programming, allowing students to participate in the artifact creation process helps to build computational skills that they can then apply to other complex problems to create their own models.

References

Google School, (2016). What is computational thinking? [Youtube Video]. Retrieved from: https://www.youtube.com/watch?v=GJKzkVZcozc&feature=youtu.be.

Haiken, M., (2017).  5 ways to gamify your classroom. Retrieved from: https://www.iste.org/explore/articledetail?articleid=884.

International Society for Technology in Education, (2017).  The ISTE standards for students. Retrieved from: https://www.iste.org/standards/for-students.

Kazimoglu, C., et. al., (2012). A serious game for developing computational thinking and learning introductory computer programming. Procedia-Social and Behavioral Sciences, 47, 1991-1999.

Kolb, L., (2015). Epic fail or win? Gamifying learning in my classroom. Retrived from: https://www.edutopia.org/blog/epic-fail-win-gamifying-learning-liz-kolb.

Voogt J, et. al., (2015). Computational thinking in compulsory education: Toward an agenda for research and practice. Education and Technologies, 20(4), 715-728.

Yang, Y. C., & Chang, C. (2013). Empowering students through digital game authorship: Enhancing concentration, critical thinking, and academic achievement. Computers & Education, 68(c), 334–344.

Innovation Through Using Problem-Based Learning

Whenever I think of the word “innovation,” I am reminded of the bear, honey, and powerline story. If you are not familiar with this story, I’ll offer a brief synopsis here, though there are other detailed versions available.

Employees of a powerline company met to brainstorm the issue of snow and ice accumulation on power lines which would down the lines in winter months. Despite formal, morning-long brainstorming, the session yielded little results. Frustrated, the team decided to take a short break. While on break, a few of the team members began to talk over coffee where one team member reminisced about how he got chased by a bear while out servicing the lines. After a good laugh, other team members jokingly suggested that they get bears to remove the snow/ice by placing honey pots on top of the powerlines. Continuing the joke, one team member suggested that they use helicopters to place the pots.  This idea was put to rest as another team member mentioned that the vibrations from the helicopters would scare the bears. Suddenly they realized they had a great solution on their hands, the company could use helicopters to remove the snow/ice through the force and vibrations caused by the helicopter blades. Because of this impromptu brainstorming session, using helicopters to remove snow and ice from powerlines is a common practice today.

diagram of a bear, honey, and a helicopter facilitating innovation.
Figure 1.1 A bear, honey, and a helicopter for innovation.

I like this story because it dispels the misconception that to be innovative you must create something new, like a product or a service.  Instead, innovation can be a way to problem solve. Much like the process that unfolded in the bear story, students should be encouraged to problem solve in creative ways.  By offering students opportunity to seek, identify, and apply information, they are building cognitive flexibility, a 21st century skill, (Kuo et. al., 2014). Cognitive flexibility encourages the development of creativity needed for innovation, a concept that involves the ISTE innovative designer standard where “students use a variety of technologies within a design process to identify and solve problems by creating new, useful or imaginative solutions,” (ISTE, 2017).

So then, how do you get students to begin thinking less about the “correct answer” and more “bears, honey, and helicopters” for innovation? This can be particularly difficult when students historically have been offered a “right” and “wrong” depiction of problems. Students can be “eased” into creativity through scaffolding using the systematic thinking concept of the creative problem solving model, (Kuo et. al., 2014). A summary of the model can be found in figure 1.2 below.  

Diagram of the Creative Problem Solving Model
Figure 1.2 The Creative Problem Solving Model

The creative problem solving model transitions students between understanding a problem, generating ideas about the problem, and finding solutions to that problem, (Kuo et. al., 2014).  The students evolve their thinking from identification to more complex thinking, ultimately evoking creativity and innovation.

While the creative problem solving model can be used to build cognition through various problem-solving steps, problem-based learning (PBL) can help format the classroom to help achieve self-directed learning. An instructor can start with any question-type from the creative problem solving model and allow students to work through that question with PBL.  The general process for designing a problem-based classroom is demonstrated in figure 1.3 below.  

Diagram depicting the Problem-Based Learning Process
Figure 1.3 The Problem-Based Learning Process

According to the National Academies Press, a PBL activity focuses on student-centered learning where the instructor is a facilitator or guide and the students work together to gather information, then generate ideas to solve the problem. The problem itself becomes the tool to obtain knowledge and develop problem solving skills, (National Academies Press, 2011).  PBL is not without its faults, in using PBL, students have slightly lower content knowledge than in the traditional classroom and students in a group may not share the same level of cognition, (National Academies Press, 2011).  Despite this, students engaging in PBL have a higher retention of content than in traditional classrooms, are better able to apply their knowledge, and have a deeper understanding of the content, (National Academies Press, 2011).

Putting the Theory into Practice: The Investigation

Several of the classes that I teach are content-based/coverage-based classes. These classes are designed to be foundational, meant to prepare students for higher level or more in-depth, application-based classes later on. As I was thinking about problem-based learning, I started wondering: “how can we fully expect students to become problem-solvers and apply content in more advanced classes when all they are expected to do is identify a concept in these foundational classes”?  Students really don’t understand the importance of a particular topic because the idea of application and innovation isn’t introduced until they are in another class.  To help give these coverage-based classes more meaning to the students now, I am considering applying more PBL-based activities to directly replace coverage-based activities. My investigation leads me develop the two guiding questions below that will help me gather ideas on how to solve this problem. I realize that I am essentially engaging in my own PBL.

Question 1: What are some examples of problem-based, or “idea-finding” class activities that better support student learning in coverage-based classes?  One resource that addresses this question is from the National Academies Press who published a summary of two workshops conducted in 2011 on “Promising Practices in Undergraduate Science.” The selected chapter (Chapter 4) summarizes the benefits of problem-based learning and describes 3-methods that show promise in content-heavy classrooms. Additionally the chapter provides templates or guiding principles for problem based activities, case-scenarios, and complex problems that are clear, concise, and general enough that they can be applied to various assignments or learning activities.  However, this chapter does not address specific examples to use as a model.  Despite this, the chapter is supportive in building theory and gathering initial ideas for PBL in the classroom. Another resource that may help address this question comes from the The Creative Classroom Project.  The project is a website created by the Eramus project led by university lecturers in Estonia specializing in digitally-enhanced learning scenarios.  The website/blog provides not only offers theory-based ideas but actual examples of the various methods that use PBL.  The professors call the various PBL methods “learning scenarios” and base their work off of a “trialogical learning design.” Though most of the examples are for primary and secondary education, the formatting  is helpful in brainstorming similar scenarios for higher education.

Question 2: How/can ICT be used to enhance learning in those above examples? To be honest, I was not sure I would find very many examples on how to apply technology in PBL.  I was quite mistaken.  Depending on the goal or scope of the learning activity, a multitude of tech apps and websites can be applied to the various PBL methods. Here are just a few examples of tech resources that can be used with PBL:

  • LePlanner lesson plan templates from the Creative Classroom Project. This resource provides several examples of specific tech such as padlet, pearltree, and mindmiester, that can be used to enhance classroom activities. The templates also provide lesson plans (via LePlanner software) which includes description of objectives, class activities that meets the objectives, and even includes timelines for each activity.
  • Digital storytelling corresponds with the case-studies (case scenario) PBL method. According to the National Academies Press chapter, one of the justifications for using case studies is that it is a form of storytelling.  Storytelling helps students learn by integrating knowledge, reflecting on ideas, and later articulating them while considering various perspectives, (National Academie Press, 2011).  Digital storytelling is a way to introduce technology as a problem-solving tool and helps students express their various perspectives. This digital storytelling resource offers background information about digital storytelling, the seven elements of storytelling, and resources (tech solutions) can be explored. I had never considered using blogs, pinterest, and other such social media resources for the purposes of digital storytelling.

The Next Steps.

This investigation has been a great first step in generating ideas for implementing more PBL activities into my content-intensive courses. There seems to be an endless world of possibilities for  integrating technology to develop creative solutions and innovation in the classroom. What I find interesting is that my findings mirrors that of the bear, honey, and helicopter story.  I discovered that coming up with a solution to my questions doesn’t involve reinventing the wheel, but rather considers ideas/products that already exist and using them in creative ways.  For example, I would have never considered using the Pinterest app or even Google Docs as a creative solution to digital storytelling.  Nor would I have considered that developing good problem-solving skills for students simply involves asking the right questions.

My process doesn’t end here. If I choose to implement PBL, the next steps will involve the six-step process highlighted in this article to successfully design, implement, and evaluate problem-based learning.  I need to carefully consider the major objectives of my course(s) and the amount of time needed for this process.  As suggested by the National Academies Press, successfully implementing any of the PBL methods takes time which may not always be a luxury in coverage-based classes. Before moving forward, I need to understand that I would not be able implement PBL with every topic but must carefully select activities that would help solidify the major objectives of the course.

My colleagues and professors have also suggested using alternative models such as the  human-centered design or Kathleen McClaskey’s Continuum of Choice (see figure 1.4 below).

Diagram of the Continuum of Choice.
Figure 1.4 McClaskey’s Continuum of Choice. (Continuum of Choice TM by Barbara Bray and Kathleen McClaskey is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License available at: https://creativecommons.org/licenses/by-nc-nd/4.0/.)

I would need to investigate which design model best fits with specific course needs as well as brainstorm what questions need to be asked in order for problem-solving to be effective. Perhaps the answer to these questions will be course-specific and may require the use different models for different activities to further promote cognitive flexibility.

References

International Society for Technology in Education, (2017).  The ISTE standards for students. Retrieved from: https://www.iste.org/standards/for-students.

Kuo, F.-R., Chen, N.-S., & Hwang, G.-J. (2014). A creative thinking approach to enhancing the web-based problem solving performance of university students. Computers & Education, 72(c), 220–230.

National Academies Press. (2011). Chapter 4: Scenario-, problem-, and case-based teaching and learning. In National Academies Press, Promising practices in undergraduate science, technology, engineering, and mathematics: Summary of two workshops.(pp. 26-34.) Washington, DC. DOI: https://doi.org/10.17226/13099.

Pata, K. (2016). Problem-based learning in task-based and inquiry-based scenarios. [Blog] Retrieved from: https://creativeclassroomproject.wordpress.com/creative-classroom-collection/problem-based-learning/

Effective Tech Tools in Content Curation for Research

The search for technology solutions that build 21st century skills to empower students continues with the concepts of “knowledge construction” and “content curation”. The ISTE standards for students defines knowledge construction by the ability of students to, “…critically curate a variety of resources using digital tools to construct knowledge, produce creative artifacts and make meaningful learning experiences for themselves and others”, (ISTE, 2017). This means that students use effective search strategies to investigate meaningful resources linked to their learning, critically analyze information, create a collection of artifacts demonstrating connections/conclusions, and explore real world issues, developing “theories and ideas in pursuit of solutions,” (ISTE, 2017).  Unlike any other time in history, students today face an enormous challenge of receiving, processing, and using countless bytes of content per day.  Understanding how to decipher useful vs. unuseful, relevant vs. irrelevant, credible vs. not credible information is an incredibly important 21st century skill.  Some are even saying that “content curator” and “knowledge constructor” will be job titles of the near future, (Briggs, 2016).  

Knowledge construction is a facet of the sociocultural theory using a social context for learning where students develop a better understanding of content through collaboration. Students work together to gather information and develop solutions to real-world problems, effectively forcing students to move past their existing knowledge of the world, (Shukor, 2014). Using real-world problems peaks students’ interest of assignments and allows them to put their own spin on a probable solution. This problem-based model allows educators to promote learning through activities that acknowledge what students already know, consider what students need to know to create a solution, and cultivate ideas to solve the problem, (Edutopia, 2016).  To successfully run a problem-based classroom, the focus must shift from evaluation of final products (i.e. correct answers on a worksheet) to evaluation of the process in which the answers were produced and the content that the students cultivated.  Because of this, the final product or assignment is more variable from group to group based on the results of the collaborative process, but should reflect knowledge attainment, (Edutopia,2016).  Shifting focus to a problem-based learning model has benefits beyond the content that students construct through their group work. Students are exposed to more skills such as planning, monitoring, synthesizing, organizing, and evaluating, (Shukor, 2014 & Briggs, 2016). While content curation may not be the main focus of an assignment, understanding how to arrange information in a purposeful way builds information fluency.  According to education leader Saga Briggs, content curation is defined as placing purpose and intention on information that should then be shared (perhaps via social bookmarking), used towards the creation of an artifact or final product, and the content curator should provide their own contribution to the body of work, i.e. provide something of value to their target audience, (Briggs, 2016).  

Developing information fluency, or clearly communicating purpose of information, is a key 21st century skill for students. One problem that students face with information fluency is with current student search strategies. Students miss out on the critical analysis portion in information selection, (O’Connor & Sharkey, 2013). It is difficult, or even impossible, to communicate purpose of information without first critically analyzing the information for relevance.  Figure 1.1 summarizes O’Connor & Sharkey’s depiction of the current state of student search strategies.

Diagram Summary of O'Connor & Sharkey's Current State of Student Search Strategies.
Figure 1.1 O’Connor & Sharkey’s Current State of Student Search Strategies

 This search strategy depicts a vicious cycle. The educator’s ultimate goal is to get students to conduct higher level investigation (i.e. critical analysis), but most students never move past the “grazing” or the background search.  This problem is further exacerbated by educators who do not provide feedback (see my previous post on formative feedback). Therefore, there is a need to teach students how to interpret, synthesize, and construct new concepts through effective search strategies, (O’Connor & Sharkey, 2013).

Putting the Theory into Practice: The Content Curation Investigation.

When challenged to develop a personalized question addressing information fluency, my nutrition research class resurfaced. These researchers-in-training need to develop content curation skills as an essential part of conducting research.  One assignment in that course reminded me of the O’Connor & Sharkley conundrum.  Students are required to conduct a literature search through the university’s library on a topic related to a food or ingredient they wish to experiment on.  From this literature search, students create an annotated bibliography whose goal is to gather information on what work has already been done with a particular food or ingredient, understand the key concepts and/or patterns that emerge from that body of work, and help students refine their own work by analyzing and concluding what is still left to investigate.  Historically, students “graze” through this assignment, missing that critical analysis piece.  Although students do receive feedback, it is summative and not formative. Keeping all of these current issues in mind, my question began to unfold:

“What simple tech tool can effectively be used to help students better annotate and organize scientific literature when conducting a literature search?”

Resource Search. When investigating possible annotation tools to help students better curate and organize information from scientific literature, three main criteria came to mind. The tool must: 1) offer annotation features; 2) allow for organization of literature and/or annotations; 3) allow for collaboration and sharing. Annotation is the skill of focus for the assignment.  Being able to cultivate useful information via annotation from scientific works will allow students to create connections through the practice of active reading. The goal of annotation in this sense means that students are reading to not only review what information already exists, but also analyze that existing information to infer what may be missing (i.e. literature gaps), and connect their work to the existing literature.  A tool that aids in organization will also help fulfill the ISTE standard for students on knowledge curation by thinking about the literature as categories to better extract information from each resource, thereby helping to also develop their information fluency.  How students classify their information will help them organize their ideas and later their final artifacts.  Lastly, the ability to collaborate and share their annotation/organization is important to receive formative feedback.

My investigation began with a google search using “social bookmarking for education” and “web annotation tools for education” as keywords. Several articles from edtech sources listing the top favorites were reviewed, resulting in over thirty different types of tools and apps.  To narrow this selection, I applied the three criteria above which produced five possible options.  A summary of each option is provided in table 1.1 below.  

Table Comparing 5 Social Bookmarking Websites
Table 1.1 Social Bookmarking Website Comparison

Resource Comparison. From this investigation, Diigo, Mendeley, and Scrible fulfill the three criteria above without interface issues, currency issues, and are still available.  Crocodoc is no longer available (R.I.P. Crocodoc), and A.nnotate’s user interface looks dated and does not offer all of the added features found on the other three websites. In fact, when searching for reviews of A.nnotate, the latest one I could find dates back to 2008.  Comments in that review article suggest using Google Docs or even Microsoft Word as an alternative to A.nnotate.

Diigo offers a library that supports multi-source uploads including pdfs, images, screenshots, and URLs into their library (see Figure 2.1 below).

Diigo Library Screenshot
Figure 2.1 Diigo Library Screenshot

The highlight feature of this app is the ability to organize and categorize resources using tags. These tags can be easily searched for quick access to a specific category or categories. The user then has the option to annotate the resource which can be shared with a group that the user creates (the assumption is that group members also have Diigo)  or through a link the user shares. Other features and benefits are explored here.  Diigo is a free service, or rather at sign up, the user must choose a package, the most basic is free. The free version allows up to 500 cloud bookmarks and 100 webpage and pdf highlights. The downside, the free version doesn’t not allow for collaborative annotation.

My initial impression of Mendeley is that it is very research-focused. Upon further investigation, my impression was correct as the website is a partner with Elsevier, a parent company to many peer-review journals. In the profile creation process, the user is asked to fill out a short survey on intended use and level of use (i.e. undergraduate v.s. graduate research).  Like Diigo, the library allows for uploading pdfs, or articles directly from the web. The library can be organized into folders, but does not allow for tagging.  See figure 2.2 below.

Screenshot of Mendeley Library
Figure 2.2 Mendeley Library Screenshot

The annotation feature offers highlighting and sticky notes (comments).  Articles can be shared via emailable link for individuals who do not have a Mendeley account or the user may elect to create a group to share documents to peers with accounts.  An interesting feature of Mendeley is the desktop version of the website that saves permanent article copies to the user’s desktop to allow for offline work.

Scrible seems to be a fairly new website. While the purpose of this site is to allow for social bookmarking and web annotation just like Diigo and Mendeley, it also has a classroom feature. Educators can upload resources that all students can access. Scrible can also be incorporated into an existing Google Classroom. Students can appreciate a seamless integration with Google Docs and as an added bonus, the site will automatically create citations and bibliographies.  Figure 2.3 shows the Scrible library.

Screenshot of Scrible Library
Figure 2.3 Scrible Library Screenshot

The downside of this website is that while the classroom, the google doc integration, and the citation features are free for K-12 classroom use, it is not free for higher education use. Higher ed users are given a 30-day free trial and then the program converts to the basic plan which offers the exact same features as Diigo.

Conclusion. Diigo and Mendeley are easy to use, offer sharing features, and connect to social media for collaboration though neither support collaborative annotation in the free versions. In addition to the features mentioned above, Scrible does allow collaborative annotation in the basic package. Diigo seems to be optimized for websites and web articles while Mendeley is optimized for research articles, with Scrible somewhere in-between.

Since all three websites offer the same desired features, all three score highly on the Triple E rubric: 5 points on engagement in the learning, 6 points on enhancement of learning goals, and 5 points on extending the learning goals. Therefore all three would fulfill the assignment goals. In order to pick one appropriate for this assignment, I would need to consider the students. Mendeley, designed specifically for research articles, is not only a good fit for the assignment, but students could  continue to use this website should they go to graduate school. Diigo is focused on web articles and could be used by students in their other classes or other aspects of their professional lives. Scrible, having more of a focus on education, may not be equally as useful outside of the classroom.

The Next Steps.

Though any of the three websites would be suitable for the annotation assignment, I do not teach this section alone. I’ve enlisted the help of the university librarian who co-teaches literature search skills for this course. She was quite enthusiastic at the thought of web-tool integration with this assignment and we will be adding another criteria addressing seamless integration with our library website and resources to make our final decision.  

References.

Briggs, S. (2016, July 27). Teaching content curation and 20 resources to help you do it [Blog post]. Retrieved from: https://www.opencolleges.edu.au/informed/features/content-curation-20-resources/

Edutopia. (2016, November 1). Solving real-world problems through problem-based learning. Edutopia. [Video File]. Retrieved from https://www.edutopia.org/practice/solving-real-world-issues-through-problem-based-learning

International Society for Technology in Education, (2017).  The ISTE standards for students. Retrieved from: https://www.iste.org/standards/for-students.

O’Connor, L., & Sharkey, J. (2013). Establishing twenty-first-century information fluency. Reference & User Services Quarterly, 53(1), 33–39.

Shukor, N. A., Tasir, Z., Van der Meijden, H., & Harun, J. (2014). Exploring students’ knowledge construction strategies in computer-supported collaborative learning discussions using sequential analysis. Educational Technology & Society, 17(4), 216-228.

Incorporating Feedback Loops to Develop An Empowered Student

Being a successful professor means preparing students to be successful. Delivering knowledge-centered classes on a particular topic is no longer the primary task of professors. Gone are the days of the large lecture halls, professor front and center, exhibiting knowledge for students to somehow absorb.  Scholars are now calling for students and professors to engage in a new learning paradigm that provokes the development of specific skills for the 21st century.  This paradigm includes teaching five major career skills that are highly sought after by employers today.  Mastering these five essential skills means that students: 1) thrive on change by being receptive to feedback, 2) are able to get things done independently and without direction, 3) are open-minded, understand their own biases, and appreciate differences in others, 4) know how to prioritize tasks, and are good at influencing behavior of others, 5) facilitate activities and relationships within an organization, (Kivunja, 2014).  This is not an easy feat as skills need time and practice to be cultivated. The first ISTE standard for students calls for the empowered learner as a mechanism to help build 21st century skills.  The empowered learner is one that, “…leverages technology to take an active role in choosing, achieving, and demonstrating competence in their learning goals,” (ISTE, 2017). An empowered student is one that is at the forefront of their learning by thinking beyond the lecture and is autonomous because they have intrinsic motivation, (Stefanou et. al., 2004).  

Figure 1.1 Empowered Student Flowchart

So if students need to develop self-determination and become autonomous in order to thrive in the current workforce, are we, as educators, doing our part in preparing them to do so?  This question can only be answered positively if we adopt a student-centered approach to teaching.  The authors of the book, Understanding by Design, challenge educators to consider the backward design approach. In this design approach, the educator starts their plan with the desired results, determines which indicators are appropriate for measuring the outcomes of their results, then plans the experiences and/or instruction required to achieve these outcomes, (Wiggins & McTighe, 2005).  When students are informed of the desired results and are allowed to take part in the creation process, that’s when self-determination and autonomy develops, (Stefanou et. al, 2004).

It is also important to remember that students are still developing these skills so simply stating the purpose or goal of an assignment and leaving them to their own devices will not help them develop autonomy.  Coupled with the student-centered approach, formative feedback must be included to help guide and remind students of the big-picture results.  Formative assessment when conducted as a feedback loop helps to “enhance performance and achievement,” (Wiggins, 2012).  Essentially, this means that students are given consistent, on-going, and immediate feedback as a way to encourage continual practice of skills.  Formative feedback is not evaluated formally (i.e. no grades are assigned to the feedback) and does not offer extensive evaluation, advice, nor it is purely praise.  Instead, formative feedback offers the student a “gauge of their efforts to reach a goal”, (Wiggins, 2012).  In order to provide good feedback, the assessor must first observe, then comment or ask questions on those observations, (Wiggins, 2012). Figure 1.2 summarizes Wiggin’s strategy on formative feedback.

Figure 1.2

Putting the Theory Into Practice: The Investigation.

In our digital education leadership program, we were asked to create a question(s) related to the classes we teach and investigate a resource(s) that would aid in addressing the first ISTE standard for students.  I teach a nutrition research class whose main purpose is to develop not only students’ research skills but also build autonomy as researchers. Students must  investigate a food-related issue, then design and implement an experiment, later report their findings through a final research paper. This class explores the research process including hypothesis creation, experiment -building and -testing, and scientific writing.  The current challenge is to allow enough freedom for autonomy to develop while providing  direction to ensure correct research protocol is established.  

I began my brainstorming process for a student-centered approach to the issue by first identifying the important design outcomes. I started with a goal: Allow students to take their research project into their own hands while working toward a common goal and using the research protocol. Though students will be developing autonomy and need to be self-driven, they will also need appropriate feedback in order to gauge their work at critical points in the quarter. With this goal in mind, two main questions developed: 1) What feedback timeline would be most effective to design a researcher-centered approach to teaching nutrition research classes? and 2) What computer driven-tools would effectively provide timely and ongoing feedback?  The findings of my investigation and potential resources are explored below.

Question 1: What feedback timeline would be most effective to design a researcher-centered approach to teaching nutrition research classes? Upon further investigation, this question can’t be answered directly. Each assessment will vary in scope and length, therefore a prescribed timeline is not feasible. However, according to education leaders Hicks and Wiggins, they both agree that formative feedback is the best approach using the student-centered or researcher-centered approach.  As a reminder, formative feedback is not formally assessed but rather allows the student/researcher an opportunity to take a step back to evaluate and reflect upon their own work in relation to their research goals. The timing of feedback should be immediate, ongoing, and consistent,(Hicks 2014, Wiggins 2012).  Feedback should follow a specific format which does not make judgements nor evaluates the work.  Hicks references the RISE model (see figure 1.3) to format formative feedback in a meaningful way, which is why I’ve chosen the model as the resource of choice for this question.

Figure 1.3

The RISE model can be used for self-assessment, peer-review, or evaluator review in formative feedback.  The process begins by assessing the degree to which the current work meets the goals/objectives of the assignment.  The subsequent steps allow for specific, tangible, and actionable suggestions to the author for improvements on their current version and future version of the work. The benefit of using this model is that as the feedback advances towards higher steps, it also involves higher level of thinking. RISE allows the user to get at the heart of student-centered learning by allowing students to evaluate and create works. I have not used this model in action but my predictions for any drawbacks may involve peer-feedback where students skip a level or provide judgements without fully understanding the model itself.  These concerns could be combated with scaffolding and more detailed instruction on the feedback process.

Question 2: What computer-driven tools would effectively provide timely and ongoing feedback? For an assessment item such as a research paper, using a collaboration tool such as G suite or the Google Doc Collaboration feature in CANVAS is ideal.  Google Docs are available to anyone that holds a gmail sign-in, along with several other features of the G suite including: to-do lists, calendar, google hangout, and gchat, just to name a few.  The Google Doc collaboration feature in CANVAS allows students to access a google doc on one google drive (usually belonging to the instructor).  The owner of the google drive would then have access to all of the collaboration pages for the class. The use of these collaboration tools is appealing because the docs are easily accessible by students, the professor, or individual providing the feedback.  Formative feedback is simple to provide using the “comment” feature. Google Docs also track changes throughout the life of the document and provides comment notifications in gmail. Using Google Docs would also help address issues related to equality of work among team members (i.e. members doing their fair share of the collaboration). To further my justification of this technology, it would help me improve my current assignment by achieving M and R from the SAMR model.  Google Doc collaboration also scores roughly a 14 on the Triple E rubric (according to my assessment of intended use).

The only downside related to the collaboration tool feature in CANVAS. The feature is not intuitive and somewhat difficult for students to access. It is also not well integrated with Google Docs, for example, simply placing students into groups on CANVAS and assigning these groups to a Google Doc collaboration does not automatically give students access to their group’s Google Doc in the drive.  The instructor has to manually give permission to each student. The collaboration feature also does not link instantly to the gradebook or back to CANVAS where other course materials/resources would be kept.

The Next Steps.

The RISE model and Google Doc tool were well received by my colleagues when evaluating them as resources that resolve my two questions on formative feedback. Not surprisingly, others also shared similar concerns with using Google Doc as a collaboration feature in CANVAS. Since Google Docs can be used independently of CANVAS, this is not a big issue particularly since formative feedback is not associated with a formal grade therefore an association with CANVAS materials or gradebook is not necessary.

Interestingly, most of their feedback on these two resources related to implementation, namely what assessment tools would/could be used to implement the RISE model and would/could Google Apps for Education help facilitate this assessment function? My initial reaction on creating an assessment tool to implement the RISE model was to create “guiding questions” students would answer as part of their feedback comments.  By answering the questions fully, the students would effectively go through the entire model without skipping steps. I have yet to investigate other Google Apps for Education for feedback features.  Though I do not have complete answers to these great questions, I do have the beginning of of my next investigation: Feedback Implementation.

References

Hicks, T. (2014, October 14). Make it count: Providing feedback as formative assessment. Edutopia. Retrieved from: https://www.edutopia.org/blog/providing-feedback-as-formative-assessment-troy-hicks

International Society for Technology in Education, (2017).  The ISTE standards for students. Retrieved from: https://www.iste.org/standards/for-students.

(Kivunja, C. (2014). Teaching students to learn and to work well with 21st century skills: Unpacking the career and life skills domain of the new learning paradigm. International Journal of Higher Education, 4(1), p1. Retrieved from http://files.eric.ed.gov/fulltext/EJ1060566.pdf

Stefanou, Candice R., Perencevich, Kathleen C., DiCintio, Matthew, & Turner, Julianne C. (2004). Supporting Autonomy in the Classroom: Ways Teachers Encourage Student Decision Making and Ownership. Educational Psychologist, 39(2), 97-110.

Wiggins, G., & McTighe, Jay. (2005). Understanding by design (Expanded 2nd ed., Gale virtual reference library). Alexandria, VA: Association for Supervision and Curriculum Development.

Wiggins, G. (2012, September). 7 keys to effective feedback. Education Leadership. 70 (1).

Wray, E. (2018). RISE Model. Retrieved from: http://www.emilywray.com/rise-model.

css.php